
NAT'L INST. OF STAND & TECH

AlllDb 3TL.0A5

NIST

publication
''/'.MM ’Ir.i’inWi

1

,!!'

N I STI R €413

Using Numerical Grid Generation to

Facilitate 3D Visualization of Complicated
Mathematical Functions

Bonita Saunders
Qiming Wang

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

100 Bureau Drive Stop 8910
Gaithersburg, MD 20899-8910

QC

ioo NIST
.156

NO. 641

3

1999

NISTIR 6413

Using Numerical Grid Generation to

Facilitate 3D Visualization of Complicated
Mathematical Functions

Bonita Saunders
Qiming Wang

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

100 Bureau Drive Stop 8910
Gaithersburg, MD 20899-8910

November 1999

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Cheryl L. Shavers, Under Secretary for

Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

Using Numerical Grid Generation to Facilitate 3D
Visualization of Complicated Mathematical Functions

Bonita Saunders, Qiming Wang

National Institute of Standards and Technology

100 Bureau Drive Stop 8910

Gaithersburg, MD 20899-8910

bonita.saunders@nist.gov, ciiming.wang@nist.gov

Abstract

Although virtually unchanged since its initial publication in 1964, the National Bureau of Standards (NBS)

Handbook of Mathematical Functions continues to be widely used by the mathematical and scientific com-

munity. As a result, the National Institute of Standards and Technology (NIST), the successor organization

to NBS, is engaged in a large scale project to update and expand the handbook and disseminate it on

the World Wide Web as the NIST Digital Library of Mathematical Functions (DLMF). A key feature of

the DLMF will be 3D graphics and visualization capabilities that allow a user to interactively examine the

unique features of complicated mathematical functions. The authors have discovered that many commercial

packages produce adequate surface plots of functions, but improperly clip the surface when the plot must

be rescaled to emphasize interesting features. This paper discusses some initial results in using a “contour”

fitted mesh to generate an appropriately clipped surface plot and examines some of the issues involved in

extending the technique to more complicated surfaces.

Keywords: grid generation, 3D clipping, special functions, scientific visualization, virtual re-

ality modeling language

1 Introduction

The Handbook of Mathematical Functions [1] is a

well known publication of the National Bureau of

Standards, the predecessor organization of the Na-

tional Institute of Standards and Technology (NIST).

Although there have been no major revisions since its

initial publication in 1964, it continues to be widely

sold by the US Government Printing Office, Dover,

and many other commercial publishers. The contin-

ued interest in the handbook plus such factors as

• the clear advantages of electronic media for

the construction and communication of ideas

in technical fields;

• advances in basic mathematical and computa-

tional techniques associated with the classical

special functions of the mathematical and phys-

ical sciences; and

• the identification of new functions having

widespread importance in emerging applica-

tions

have led NIST to embark on a massive project to

update and expand the current handbook and dis-

seminate it in digital format on the World Wide

Web; see Lozier [2] for an early description and

http://math.nist.gov/DigitalMathLib for current in-

formation on this new project. The new entity, which

is being called the Digital Library of Mathematical

1

Functions (DLMF), will make full use of advanced

communications and computational resources. A key

feature of the DLMF will be dynamic 3D visualiza-

tions of special functions that allow a user to conduct

interactive explorations of the relationship between a

function’s mathematical or numerical properties and

its graphical representations.

While constructing 3D graphical representations for

a sample chapter of a mockup version of the DLMF,
the authors discovered that problems may arise wdicn

graphs must be rescaled to emphasize peaks, zeros,

poles and other interesting features. Many packages

fail to clip the surfaces properly. Some produce ragged

uneven edges and others create a misleading “shelf’

effect. To address this problem, the authors are study-

ing the feasibility of obtaining clipped surfaces by

computing complicated mathematical functions over

“contour fitted” meshes. This paper examines the

clipping problem, looks at some of the results ob-

tained to date for the prototype chapter, and offers

some suggestions on what might be done for multi-

connected and more complicated domains.

2 3D Visualization in a Web-
Based Digital Library

Like the original handbook, the DLMF is designed

primarily for the use of scientists. A secondary, but

important goal is to reach a much broader audience

by making aspects of the DLMF accessible to educa-

tors and students. An obvious way to support these

dual goals is to create 3D visualizations that are both

exciting and informative. Fortunately, the graphical

representations of many special functions are so com-

plex and interesting that by designing visualizations

that illustrate the features of interest to scientists we
automatically produce displays that grab the atten-

tion of less technically oriented viewers.

2.1 Static and Dynamic Visualizations

of Special Functions

For both the still images and interactive visualiza-

tions in the DLMF we begin with a preprocessing

stage, using available packages such as MATLAB and

MATHEMATICA to plot the data so that we can

examine the graphical representation and adjust the

scaling to bring out interesting features. While the

still images are stored in GIF or POSTSCRIPT for-

mat, dynamic visualizations are obtained by convert-

ing the data to VRML (Virtual Reality Modeling

Language) format. VRML [3] is a standard 3D file

format for describing the behavior and geometry of

a 3D virtual world, or scene. Its accessibility on the

Internet and interactive capabilities make it an ideal

candidate for this development work. Since all as-

pects of the DLMF will be designed to be accessible

to as large an audience as possible, users must not

be required to purchase proprietary software in order

to use any of its features. VRML browser plugins

are available by free download for a variety of plat-

forms. Still, it is not a foregone conclusion that the

final version of the DLMF will use VRML. This may
depend on whether VRML browsers continue to be

readily available. Also, we are looking at alternatives

to VRML such as JAVA 3D which would not require

the download of a browser, but still would require the

user to obtain the graphics package. In our mockup
DLMF we give the user the option of viewing a still

3D image if a VRML browser is not available.

Figure 1 shows a VRML display from the prototype

chapter on Airy functions in our mockup Web site.

The Airy functions, Ai and Bi, occur in quantum me-

chanics, in the study of wave diffraction, electromag-

netism, and other areas of physics and engineering,

and arise as solutions of the second order differential

equation

d2w
~d^

= ZW

where 2 is complex. The display shows |Ai(z)|. The

browser controls allow the user to rotate the figure,

zoom in and out, and move the figure in an arbitrary

direction.

Figure 1: VRML display on CosmoPlayer.

2

The preprocessing of the data mentioned earlier is

necessary because VRML is not designed to do ex-

tensive computations. Therefore, any adjustments

to the range, rescaling, and clipping are done before

the data is transformed to VRML format. However,

VRML does allow one to add custom designed fea-

tures to the browser. One such feature we have added

is a cutting plane control panel which gives the user

the capability to generate cutting planes through the

surface. By clicking on the buttons on the control

panel the user can move the plane in sync with the

projected intersection curve, displayed on opposite

faces of the bounding box as shown in Figure 2. Com-
puting a surface over a structured grid nicely orders

the data points so that it is easier to design efficient

software that computes the intersection of the surface

with a plane.

Figure 2: VRML display with Y direction cutting

plane.

2.2 3D Clipping

In general, commercial packages, such as MATLAB
and MATHEMATICA, produce a default scaling of a

surface that is designed to give the best overall view.

However, when the function values vary widely over

the plotting domain, the default view may fail to show

interesting features such as zeros, poles, or saddle

points. In many cases adjusting the plotting domain

and rescaling the graph may be enough to empha-

size points of interest and produce an aesthetically

pleasing plot. This was true for most of the graphs

designed for our sample chapter on Airy functions

in the mockup DLMF. However, sometimes rescal-

ing the graph may cause some points to fall outside

the plotting range. In such a case the surface should

be clipped so that the outside points do not appear.

Commercial packages handle this situation in a va-

riety of ways. MATLAB performs 2D clipping well,

but has problems with 3D clipping. In some cases it

does not clip the surface at all, allowing it to extend

beyond the plotting range. MATHEMATICA clips

in a variety of ways depending on whether you use

Graphics3D, SurfaceGraphics, or the extra Extend-

Graphics packages [4], SurfaceGraphics is designed

for surfaces that do not fold over, while Graphics3D

can be used to represent any 3D object. In both

cases the default method of clipping is to reset val-

ues outside the plotting range to the same constant.

This produces the misleading shelf effect seen in the

plot of |Bi(z)| over an equally spaced rectangular do-

main in Figure 3. This technique is extensively used

by William J. Thompson in Atlas for Computing
Mathematical Functions [5]. The user has the

mathshelf.nb
1

Out|i]= SurfaceGraphics

Figure 3: Clipped version of |Bi(^)| using Mathemat-

ica.

option of leaving out the clipped areas, but that pro-

duces jagged edges that are equally misleading as seen

in Figure 4.

By resetting the plotting range after drawing the sur-

face, we obtained the smoothly clipped surface in Fig-

ure 5 using Graphics3D, but not SurfaceGraphics. A
similar result can be obtained by using the Clip3D

routine in the ExtendGraphics package. Although

the clipped surface looks very good, Figure 6 shows

that when the data is converted to VRML format the

3

Out(21= SurfaceGraphi cs

Figure 4: Clipped version of |Bi(^r)
|

with shelf deleted.

shading appears unsmooth with harsh shadows. The
surface shading is based on the height of the surface

at that grid point. The grid lines in Figure 4 rise at

sharp angles toward the top of the surface. When the

data is converted to VRML, the scaling used makes

the angles even sharper. If the grid lines were shown

on the VRML surface, one would see that the col-

ors associated with the grid points change quickly as

one traces a grid line to the top of the surface. This

is probably the reason for the “ugly” shading. We
will show that plotting the function over our contour

fitted grid decreases this problem significantly.

3 Contour Fitted Grid Genera-

tion

The basic idea behind 3D visualization using contour

fitted grid generation is to compute the function over

a grid bounded by a contour of the function rather

than over a uniform rectangular grid. The idea is

simple, but the ease or difficulty of implementing the

technique depends on several factors. The contour

map of the function may be very complex. In gen-

eral, contours representing the same height may not

be connected. Therefore a decision has to be made as

to the best way to connect the curves so that a con-

tinuous boundary is formed. Also, the domain may
be quite complicated. For example, the domain of the

gamma function in the complex plane contains sev-

Figure 5: Clipped version of |Bi(z)| using Mathemat-

ica Graphics3D object.

eral holes where poles are located. Other functions

have zeros whose exact locations must be plotted, or

a domain of disconnected parts. Still others may have

a combination of complicated features. It is clear that

the grid generation problem may be quite simple or

extremely complex. Hence, it would be difficult to

design techniques that cover all situations. In this

section we describe the technique used to clip sur-

faces in the prototype chapter and discuss the results

obtained.

3.1 Technique

The first step is to determine what features should

be emphasized and what plotting range and domain

size are needed to bring out the features. For the

DLMF this may actually be a very time consuming

process, requiring close collaboration with the author

of the chapter for which the visualizations are being

designed. The authors of the DLMF will be world

renowned specialists in the field of special functions

located both inside and outside the US. Most com-

munication will have to be done electronically, but it

is expected that at some point the authors will spend

some time at NIST working on the project.

The next step is to compute a contour map of the

function based on the endpoints of the plotting range

chosen. A continuous outer boundary and interior

boundaries, if necessary, are then designed with the

4

Figure 6: VRML display of |Bi(z)| using Mathemat- Figure 7 . Default plot of
|

Bi'(2)|
using MATLAB.

ica data.

contour curves as the major components.

At this point the problem is choosing a method to

generate a boundary fitted grid. For extremely com-

plicated domains, an unstructured method may be re-

quired, but for simpler domains, structured methods

are desirable. The reason is that nicely ordered grid

lines will produce a smoothly shaded surface when

the VRML conversion is done. Also, with structured

grids more efficient code can be designed for the com-

putation and movement of cutting planes. The next

section examines the specific results obtained for the

sample chapter.

3.2 Results

Fortunately, in the sample chapter developed for the

mockup DLMF only Airy functions |Bi(z)| and |Bi'(z)|

needed clipping. Suitable plots of the other ten sur-

faces were obtained by adjusting the plotting range

and size of the rectangular computational domain.

Since the contour map and features of the two func-

tions are quite similar, only the results for |Bi'(z)|

are discussed. Figure 7 shows a plot of |Bi
/

(^r)
|

with

the default plotting range selected by MATLAB. The

range is so large that the key features of the function

are essentially damped out. After conferring with the

author of the Airy function chapter and experiment-

ing with various plotting ranges and mesh sizes, it was

determined that a plotting range of 0 < Z < 5 was

sufficient if the computational mesh was restricted to

—4.5 < AT < 2.5,— 3.5 < Y < 3.5.

Figure 8 shows the Z — 5 contour curves for the

function. After the contours were connected to the

Figure 8: Contour curves where Z=5.

sides of a rectangle to form a continuous boundary,

a simple transfinite interpolation map was used to

create the boundary fitted mesh shown in Figure 9.

Although computing |Bi'(z)| over the mesh would

produce a smoothly clipped surface, there would still

be no guarantee that the zeros of the function would

fall on the grid lines. On the contour fitted domain

|Bi'(z)| has two real zeros and two complex conju-

gate pairs of zeros. The transfinite mapping would

map some point on the square to each zero loca-

tion, but determining which points is not a simple

task. One possibility would be to design a routine

that searches for the grid cell containing the zero

and then use interpolation to construct grid lines

through the point. Instead, a more exact technique

was used. After drawing rough curves through the

zeros, cardinal spline blending functions [6]were used

D

Figure 9: Contour mesh.

to construct a transfinite mapping that interpolates

not only the outer contour boundary, but also the

curves that pass through the zeros. Using this tech-

nique one can choose which points on the square will

be mapped to a particular zero. Figure 10 shows the

contour mesh obtained with this mapping. An advan-

tage of using a transfinite mapping is that the number

of meshpoints can be easily decreased or increased

by changing the number of points evaluated on the

square. The only requirement is that the mapping

always include an evaluation at points known to map
to zeros. Of course this may effect the smoothness of

the grid as seen in Figure 10, but for this application

grid smoothness is not as critical as it would be for a

grid being used to compute the numerical solution of

partial differential equations.

Figure 10: Contour mesh with extra interpolated

curves.

Figures 11 and 12 show the effectiveness of the tech-

nique. In Figure 11, |Bi'(z)| was computed over an

equally spaced rectangular domain. The sharp cusps

were obtained by adding extra grid lines that inter-

sected the zeros of the function. The surface was

clipped by setting all points outside the plotting range

equal to 5, thus producing the shelf effect discussed

earlier. The surface suffers from the same angled grid

line problem seen in Figures 5 and 6 for |Bi(z)|, pro-

ducing non-smooth shading near the top of the sur-

face. Figure 12 was computed over the contour fitted

mesh in Figure 10. The surface is smoothly clipped

at Z = 5. The sharp cusps show that grid lines accu-

rately intersect the zeros. Also, the shading is much
smoother than what is seen in Figure 11, or even in

the clipped surface from Mathematica data shown in

Figure 6. This is probably because parts of the grid

lines roughly look like contours. Consequently, one

would expect that the projection of the grid onto the

surface would not show sharply angled grid lines.

Figure 11: |Bi'(z)|, Modulus of the derivative of

Bi(z).

Figure 12: Clipped version of |Bi'(z)|.

Figure 13 shows a view of the clipped surface from

6

the top. The darkened circles show the locations of

the zeros. Figure 14 shows a cutting plane moving

Figure 13: Top view of clipped |Bi'(z)|.

through |Bi
/

(jar)
|

in the X direction. Currently, the

mockup Web site only allows the display of cutting

planes in the X or Y direction, but work is in progress

on the development of more general software allowing

cutting planes perpendicular to all coordinate direc-

tions.

Figure 14: VRML display with X direction cutting

plane.

Although we were able to use simple structured grids

for our functions, unstructured or multi-block grids

may be needed for complex multi-connected domains.

Also, whenever possible we want to use available pack-

ages. A package may produce an unsatisfactory clip-

ping of one function, but produce an acceptable one

of another.

4 Conclusions

The use of contour fitted meshes appears to be an ef-

fective technique for generating appropriately clipped

surface plots. The development of clear and informa-

tive 3D visualizations for the NIST DLMF project

will provide us with continued opportunities and mo-

tivation to explore the clipping problem. Also, after

looking at off-the-shelf packages, it appears that re-

search in this area would be of interest to commer-

cial developers of 3D graphics packages. The problem

is clearly a complex one, since the domains of com-

plicated functions can vary from the very simple to

multi-connected domains with holes. This makes it

difficult to design techniques that work for all cases.

Somewhat simple structured grids sufficed for the

functions in the sample chapter, but more than likely

unstructured grids will be needed when w^e move on

to more complex domains.

For the particular case of the DLMF project, the

work is further complicated because close collabora-

tion is required between DLMF project members de-

signing and implementing the visualizations and the

authors of the DLMF chapters in order to determine

the proper plotting range and the locations of zeros,

poles, saddle points and other features that should

be emphasized. Each chapter will produce new chal-

lenges, but the hope is that much of wdiat we are

learning now can be easily applied to creating suit-

able visualizations for the other chapters.

Disclaimer

Identification of commercial products in this paper

does not imply recommendation or endorsement by

NIST.

References

[1] M. Abramowitz and I.A. Stegun, editors. Hand-
book of Mathematical Functions with For-

mulas, Graphs and Mathematical Tables,

Vol. 55, National Bureau of Standards Applied

Mathematics Series. U.S. Government Printing

Office, Washington, D.C., 1964.

[2] D.W. Lozier, “Toward a Revised NBS Handbook
of Mathematical Functions,” NISTIR 6072,

National Institute of Standards and Technology,

September 1997.

7

[3] VRML. The Virtual Reality Modeling Lan-

guage, International Standard ISO/IEC 14772-

1:1997.

[4] T. Wickham-Jones, Mathematica Graphics,

Springer-Verlag, New York, 1994.

[5] W.J. Thompson, Atlas for Computing
Mathematical Functions, John Wiley and

Sons, Inc., New York, 1997, pp. 414-432.

[6] G. Birkhoff, C. de Boor, “Error Bounds for

Spline Interpolation,” Journal of Mathematics

and Mechanics, Vol. 13, No. 5 (1964), pp. 827-

835.

8

